
Citation: Burtscher-Schaden, H.;

Durstberger, T.; Zaller, J.G.

Toxicological Comparison of

Pesticide Active Substances

Approved for Conventional vs.

Organic Agriculture in Europe. Toxics

2022, 10, 753. https://doi.org/

10.3390/toxics10120753

Academic Editor: Jean-Luc Brunet

Received: 13 November 2022

Accepted: 30 November 2022

Published: 2 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

toxics

Article

Toxicological Comparison of Pesticide Active Substances
Approved for Conventional vs. Organic Agriculture in Europe
Helmut Burtscher-Schaden 1,*, Thomas Durstberger 1 and Johann G. Zaller 2

1 Umweltforschungsinstitut & Umweltorganisation Global 2000 (Friends of the Earth Austria), Neustiftgasse 36,
1070 Vienna, Austria

2 Department of Integrative Biology and Biodiversity Research, Institute of Zoology, University of Natural
Resources and Life Sciences Vienna (BOKU), Gregor Mendel Straße 33, 1180 Vienna, Austria

* Correspondence: helmut.burtscher@global2000.at

Abstract: There is much debate about whether the (mostly synthetic) pesticide active substances
(AS) in conventional agriculture have different non-target effects than the natural AS in organic
agriculture. We evaluated the official EU pesticide database to compare 256 AS that may only be used
on conventional farmland with 134 AS that are permitted on organic farmland. As a benchmark, we
used (i) the hazard classifications of the Globally Harmonized System (GHS), and (ii) the dietary and
occupational health-based guidance values, which were established in the authorization procedure.
Our comparison showed that 55% of the AS used only in conventional agriculture contained health
or environmental hazard statements, but only 3% did of the AS authorized for organic agriculture.
Warnings about possible harm to the unborn child, suspected carcinogenicity, or acute lethal effects
were found in 16% of the AS used in conventional agriculture, but none were found in organic
agriculture. Furthermore, the establishment of health-based guidance values for dietary and non-
dietary exposures were relevant by the European authorities for 93% of conventional AS, but only
for 7% of organic AS. We, therefore, encourage policies and strategies to reduce the use and risk
of pesticides, and to strengthen organic farming in order to protect biodiversity and maintain
food security.

Keywords: agrochemicals; farming; synthetic pesticides; natural pesticides; environmental risk
assessment; organic farming; pesticide reduction; farm to fork strategy

1. Introduction

The global use of pesticides has increased significantly in recent decades, impacting
human health and the environment, and contaminating sites even far from the areas
of application [1–3]. The majority of active substances (AS) of pesticides used in both
conventional and organic agriculture not only affect target organisms but have side effects
on non-target organisms, including humans [4]. According to the globally adopted but
voluntary concept of “good agricultural practice”, the maintenance of high biodiversity
and the promotion of beneficial organisms should be the basis of plant protection and,
consequently, the use of pesticides should be kept to a minimum in order to achieve
environmentally friendly agriculture, and to protect human health from the inappropriate
use of agrochemicals [5].

Indeed, farmers have relied on crop rotation, mechanical plant protection measures,
robust varieties, and biodiversity-enhancing farming practices to protect crops from pests
and diseases since the dawn of agriculture [6]. However, the use of naturally occurring
insecticides, such as pyrethrins from chrysanthemum plants or fungicides based on mineral
copper or sulfur compounds, has also been documented since medieval agriculture [7].
Some of these naturally occurring AS are still used, especially in organic farming. How-
ever, during the 20th century, synthetic pesticides have become increasingly dominant in
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conventional agriculture, largely replacing naturally occurring AS and non-chemical crop
protection measures [8]. Most synthetic AS act through a targeted interaction with bio-
chemical processes that are important for the survival of populations of pests and disease
organisms [9]. Unlike these pesticidal AS, microorganisms and pheromones, as well as
the vast majority of plant extracts and mineral AS permitted in organic agriculture, exert
their effects via a non-specific chemical, physicochemical, or physical mode of action, or by
deterring or confusing pests [10].

Even the first generation of synthetic pesticides exhibited a significantly higher toxicity
to their target organisms than most naturally occurring AS. As new classes of synthetic
pesticides were developed, this toxicity steadily increased. On the one hand, this led to
much lower hectare application rates [11], but on the other hand this led to an increase in
toxicity to non-target organisms as well. For most modern pyrethroid or neonicotinoid
insecticides, the LD50 for honeybees is three to four orders of magnitude lower than
that of first general insecticides such as DDT, while sublethal effects occur at even lower
concentrations, and affect colony survival [12].

With the increase of pesticide use in recent decades, pressure on ecosystems has
increased worldwide [2,3]. Active substances used in organic agriculture have also been
shown to affect non-target organisms: for instance, copper on soil biota [13,14], sulfur on
predatory mites [15], or spinosad, an insecticide based on the bacterium Saccharopolyspora
spinosa, being toxic to honeybees and water organisms [16]. Neonicotinoid insecticides
used in conventional agriculture, but not allowed in organic farming, have been linked to
detrimental effects on insect biodiversity [12,17], soil organisms [18,19], and were found
in carnivorous and insectivorous birds [20]. Additionally, residues of synthetic pesticides
can affect sensitive crops [21] and contaminate organically farmed soils [22,23], and even
nature conservation areas [24–26].

Intense pesticide use contributes to the global decline in biodiversity [27–29] and the
overshoot of planetary boundaries [30]. This loss of biodiversity ultimately undermines
the foundations of agricultural production, and thus, “seriously threatens the future of our
food, livelihoods, health and environment” [31]. Against this backdrop, the Commission
of the European Union (EU) put forward the European Green Deal with its Farm to Fork
and Biodiversity strategies, which aim, among other aspects, to halve the use and risk
of chemical pesticides in the EU by 2030, and to expand organic farming to 25% of EU
farmland [32]. These targets made the issue of pesticide use in agriculture a topic of
political and societal debate [33]. In a statement to the EU Commission, Europe’s pesticide
industry argued that an increase in organic agriculture would lead to an “increased overall
volume of pesticide use in Europe”, because the hectare application rates of naturally
occurring pesticides would be much higher than those of synthetic pesticides [34]. This
argument is noteworthy because, at least in Germany, it is estimated that pesticides are
applied on only about 5–10% of the organic agricultural land [35,36]. The warning of an
ecological trade-off due to an increase in organic agriculture would, therefore, only make
sense if the AS permitted in organic farming were significantly more hazardous than the
chemical-synthetic AS used in conventional farming.

Assessment of the intrinsic properties of pesticide AS can give rise to scientific con-
troversy [37,38]. Evaluating the potential toxic burden of pesticides in the field is even
more difficult, due to numerous interactions with other factors [29,39]. However, in Europe,
all authorized pesticide AS—whether synthetic or natural-based—must meet the same
authorization criteria set out in the EU Pesticides Regulation (EC) No 1107/2009 [40]. To
ensure this, applicants are required to submit standardized in vitro and in vivo tests in
which physical and toxicological properties of the AS are investigated. Based on the test re-
sults, health-based guidance values, such as the Acceptable Daily Intake (ADI), Acceptable
Operator Exposure Level (AOEL), and Acute Reference Dose (ARfD), are established by
the regulatory authorities where relevant [41] and hazard classifications under the Globally
Harmonized System of Classification and Labelling of Chemicals GHS [42] are made where
appropriate. An approach for a comparative assessment of the potential toxic burden of
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pesticide AS may, therefore, be based on these health-based guidance values and GHS
classifications established under the EU pesticide authorization procedure, as has been
done in previous studies [43,44].

The objective of this study was to compare the potential toxicological hazards to
humans and the environment of pesticide AS approved only for conventional agriculture
versus those AS approved for use in organic agriculture. Our results will help policy
makers in their quest for more sustainable agriculture in Europe.

2. Materials and Methods
2.1. Database Used for This Comparison

We accessed the EU pesticide database (https://ec.europa.eu/food/plants/pesticides/
eu-pesticides-database_en) (accessed on 13 October 2022) to identify 450 pesticide AS
currently authorized in the EU, after eliminating 6 database entries as duplicates [45].

Of these 450 AS, 256 AS may be applied only on conventionally farmed land, henceforth
referred to as ConvAS. This number that resulted from the total of approved AS, subtracting
those 10 AS which may only be used for post-harvest treatment (1-methylcyclopropene, 1,4-
dimethylnaphthalene, 2-phenylphenol, aluminium sulphate, benzoic acid, carvone, phos-
phane, pirimiphos-methyl, sodium silver thiosulphate, and sulfuryl fluoride), according to
regulation 540/2011 [46], and subtracting those AS that are permitted in organic farming.

According to Annex 1 of regulation 2021/1165 [47], 185 AS were approved for use
in organic agriculture, herein referred to as OrgAS. Of these, 47 AS are used in traps
only (pheromones and other semiochemicals, and the three insecticidal AS diammonium
phosphate, deltamethrin, and lambda-cyhalothrin), 2 AS may only be used as storage gases
only (CO2 and ethylene), and 2 AS may only be used for post-harvest treatment (clove oil,
spear mint oil). Thus, for this comparison 134 OrgAS were considered. All OrgAS can also
be applied in conventional agriculture, but not vice versa.

2.2. Comparison of Potential Risks for Human Health and Aquatic Toxicity

All AS were assessed regarding the following:

• their classification as basic substance, low-risk AS, candidate for substitution, and
substances that do not fall into any of these groups [46];

• their health-based guidance values: Acceptable Daily Intake ADI, Acute Reference
Dose ARfD, and the Acceptable Operator Exposure Level AOEL [40]; and

• their hazard classifications under the Globally Harmonized System GHS on classifica-
tion, labelling, and packaging of substances and mixtures [42].

The allocation of the substances, with regard to their origin as chemically synthesized
or naturally occurring inorganic or organic substances, as well as microorganisms, was
based on information from the Pesticide Properties Database of the University of Hert-
fordshire PPDB [48]. Wherever it seemed appropriate, this information was checked and
supplemented using the scientific literature.

The allocation of the AS into the groups insecticides, fungicides, herbicides, mol-
luscicides, plant growth regulators, and “other AS”, was taken from the EU Pesticides
Database [49]. For those AS not listed in the EU Pesticides Database, (e.g., basic substances),
the PPDB [48], or the registration documents of the AS were consulted (details are shown
in Supplementary Table S1).

A basic substance is defined in the plant protection product (PPP) Regulation (EC)
No 1107/2009 as an AS that is not predominantly used as a plant protection product, but
which may be of value for plant protection, and for which the economic interest in applying
for approval may be limited [40,50]. Basic substances must not be substances of concern,
and must not have an inherent capacity to cause endocrine disrupting, neurotoxic, or
immunotoxic effects [51]. In particular, AS that meet the criteria of a “food”, as defined
in article 2 of regulation (EC) 178/2002, are classified as basic substances [52]. All basic
substances have to meet the approval requirements of the PPP regulation, but are subject to
a simplified authorization procedure.

https://ec.europa.eu/food/plants/pesticides/eu-pesticides-database_en
https://ec.europa.eu/food/plants/pesticides/eu-pesticides-database_en
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A low-risk AS is expected to pose only a low risk to human and animal health, and
to the environment [40,53]. Low-risk AS must not be carcinogenic, mutagenic, toxic to
reproduction, sensitizing chemicals, very toxic or toxic, explosive, corrosive, persistent, and
have a bioconcentration factor >100. Active substances of low risk must not be deemed to
be endocrine disruptors, or have neurotoxic or immunotoxic effects.

A candidate for substitution is defined as a pesticide AS that meets one or more of the
following criteria: it is or is to be classified, in accordance with the provisions of Regulation
(EC) 1272/2008, as carcinogenic or as toxic for reproduction (category 1A or 1B), or it is
or it is considered to have endocrine-disrupting properties that may cause adverse effects
in humans [40,54,55]; it meets two of the criteria to be considered as persistent, bioaccu-
mulative, and toxic (PBT criteria); it gives reasons for concern regarding developmental
neurotoxic or immunotoxic effects; it has a high potential of risk to groundwater; or it
contains a significant proportion of non-active isomers.

The health-based guidance values, ADI as an estimate for safe lifetime dietary expo-
sures, ARfD as an estimate for safe acute, one-meal or one-day exposures; and AOEL, as an
estimate for safe non-dietary exposures, are established, where relevant, by the European
Food Safety Authority EFSA in the course of the authorization procedure of AS [40].

Finally, hazard statements on health and environmental hazards were established
on the basis of the Classification, Labelling, and Packaging (CLP) Regulation ((EC) No
1272/2008 [54]. These hazard statements are assigned by the European Chemicals Agency
(EChA) for pesticide AS that meet the criteria for classification in accordance with this
regulation, based on the GHS classification [42]. The GHS hazard statements are assigned
to a hazard classification that describes the nature of the hazards of a pesticide AS. As part
of the authorization procedure, manufacturers carry out animal studies in accordance with
OECD guidelines. These include studies to determine acute oral and dermal toxicity as
well as toxicity by inhalation, skin and eye irritation, damage to organs, and carcinogenicity
and reproductive toxicity. Hazard statements on environmental hazards refer to hazards to
aquatic organisms, combined with environmental fate parameters. Supplementary Table S2
lists all GHS codes and hazard descriptions considered in this study.

2.3. Statistical Analyses

We performed Chi2 independence tests to determine whether frequencies of certain
hazard categories differed between ConvAS and OrgAS. As an example, for the Acute
toxicity-swallowed classification, we tested whether the number of assigned AIs to cate-
gories H300 (fatal if swallowed), H301 (toxic if swallowed), and H302 (harmful if swal-
lowed) was significantly different between ConvAS and OrgAS. No test could be performed
for hazard classifications with only one category. All tests were performed using SPSS
version 24 (IBM Incorporation, Armonk, NY, USA).

3. Results
3.1. Comparison of Pesticide Categories

Of the 256 AS that may only be used in conventional agriculture (ConvAS), 35.5% were
herbicides, 32.4% fungicides, 17.6% insecticides, 8.6% comprised plant growth regulators,
and 5.1% fell into the category “other AS”, such as rodenticides, repellents, or other
substances whose effect could not be clearly assigned to any of the above categories
(Figure 1). Of the 134 AS that may be used in organic agriculture (OrgAS), 45.5% were
fungicides, 32.1% were insecticides, and 20.9% were assigned to other categories (Figure 1).
Pelargonic acid was assigned to herbicides according to its code in the database; however,
herbicides are not permitted in organic farming in Europe. Plant growth regulators are also
not permitted in organic farming in Europe.
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Figure 1. Assignment of active substances (AS) approved in conventional (ConvAS, n = 256) or
organic agriculture (OrgAS, n = 134) to pesticide categories. The numbers in the sectors indicate the
number of AS.

3.2. Comparison Based on Substance Origin

The vast majority (87.9%) of the 256 ConvAS consist of synthesized organic derivates of
the petroleum chemistry, 7.0% of natural organic origins, 2.7% were products of inorganic
syntheses (mainly phosphides), and 2.3% were of natural inorganic origins (Figure 2).
It should be mentioned that four of these natural convAS (aqueous extracts from the
germinated seeds of sweet Lupinus albus, ABE-IT 56, talcum E553B, ferric pyrophosphate)
are currently (as of November 2022) in a process of approval for use in organic farming,
and are expected to be approved in the near future; others may follow later.
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All 134 OrgAS were natural or naturally-derived substances, as required by the EU
Organic Regulation (EU) 2018/848 [56]. Of these, 56.0% consisted of microorganisms such
as bacteria, viruses, or fungi; 32.1% were of natural organic origins (e.g., consisting of
essential oils and other plant extracts with fungicidal, insecticidal, or deterrent activity;
substances of animal origins, such as sheep fat as a repellent); and 11.9% were of natural
inorganic origins (e.g., minerals, salts, and elemental substances based on copper, sulfur,
iron, silicon, phosphorus, sodium, and potassium) (Figure 1).

A full list of all individual active substances is provided in Supplementary Table S3.

3.3. Comparison of Regulatory Risk Ratings

Of the 256 ConvAS, 18.7% were classified as candidates for substitution, 2.3% were
low-risk AS, 0.8% were basic substances, and 78.2% were not classified (Figure 3).
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Figure 3. Comparison of basic risk classifications of active substances (AS) approved for use in
conventional (ConvAS; n = 256) and organic agriculture (OrgAS, n = 134).

Of the 134 OrgAS, 22.4% were low-risk AS, 14.2% were basic substances, 3.7% were
candidates for substitution (all consisting of copper compounds), and 59.7% were not
classified. More detailed information is provided in Supplementary Table S3.

3.4. Comparison Based on Health-Based Guidance Values ADI, ARfD, AOEL

Health-based guidance values for dietary and non-dietary exposures were set by the
EFSA for 93.0% of all ConvAS: an ADI was thereby established for 93%, an ARfD for 61.7%,
and an AOEL for 93.0%. Of the OrgAS, only 5.2% AS had an ADI, 2.2% an ARfD, and
6.0% AS an AOEL. For the remaining 93.3%, the establishment of health-based guidance
values was not deemed relevant. Within the OrgAS, the insecticides spinosad, pyrethrins,
and azadirachtin, and the fungicide thymol, showed the lowest acceptable dietary and
non-dietary exposure levels, which were in the range between 0.1 and 0.01 mg kg−1 of
body weight. The lowest acceptable exposure levels within the ConvAS were two orders
of magnitude lower (between 0.001 and 0.0001 mg kg−1 of body weight), and concerned
five synthetic herbicides, tembotrione, sulcotrione, fluometuron, metam (also a nematicide,
insecticide, and fungicide), and diclofop, and two insecticides, emamectin and oxamyl
(Figure 4).
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Figure 4. Comparison of ADI (Acceptable Daily Intake), ARfD (Acute Reference Dose), and AOEL
(Acceptable Operator Exposure Level) of active substances (AS) approved for use in conventional
(ConvAS, n = 256) and organic agriculture (OrgAS, n = 134).
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3.5. Comparison of Globally Harmonized Hazard Statements

Of the ConvAS, 54.7% (140 AS) carried hazard statements; however, only 3.0% (4 AS)
of OrgAS comprised the two insecticides pyrethrins and spinosad, the fungicide sulfur,
and the basic substance hydrogen peroxide (Figure 5). The maximum number of hazard
statements assigned to a single AS was nine for ConvAS, and five for OrgAS.
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Figure 5. Comparison of the relative numbers of human toxicity hazard statements of active sub-
stances (AS) approved for use in conventional (ConvAS, n = 256) and organic agriculture (OrgAS,
n = 134).

Regarding individual hazard statements, ConvAS were significantly more hazardous
than OrgAS (Figure 6). Regarding acute toxicity if swallowed, 24.6% (63 AS) of ConvAS
were either harmful (H302), toxic (H301), or fatal (H300) if swallowed compared to 1.5%
(2 AS) of OrgAS. Regarding acute toxicity on skin contact, 3.5% (9 AS) of ConvAS were
considered harmful (H312), toxic (H311), or fatal (H310) in contact with skin, while in
OrgAS, 0.7% (1 AS) were in this category. Regarding acute toxicity if inhaled, 11.5% (30 AS)
of ConvAS were either harmful (H332), toxic (H331), or fatal (H330) if inhaled, while 1.5%
(2 AS) of OrgAS were in this category. Regarding skin damage, 25.0% (64 AS) of ConvAS
may cause allergic skin reaction (H317), cause skin irritation (H315) or severe skin burns
(H314), while 1.5% (2 AS) of OrgAS fell in this category. Regarding eye damage, 10.9%
(28 AS) of ConvAS caused eye irritation (H320), serious eye irritation (H319), or serious
eye damage (H318, H314), while 0.7% (1 AS) of OrgAS fell in this category. Of the ConvAS,
6.6% (17 AS) cause (H370) or may cause (H371) damage to organs, 7.8% (20 AS) may
(H360, H360D) damage or were suspected of damaging the unborn child (H361d, H361fd),
and 6.6% (17 AS) were suspected of causing cancer (H351), while none of these hazard
categories were assigned to OrgAS (Figure 6).

Of the 134 OrgAS, only 3.0% (4 AS) carried hazard statements: the two insecticidal
AS spinosad derived from the actinobacterium Saccharopolyspora, and pyrethrin derived
from the plant species Chrysanthemum cinerariifolium, as well as the fungicidal compounds
hydrogen peroxide and sulfur. Pyrethrins were harmful if swallowed (H302) or inhaled
(H332), and harmful in contact with skin (H312). In addition, pyrethrins and spinosad must
be labelled as very toxic to aquatic organisms (H400) and very toxic to aquatic organisms,
with long-lasting effects (H410). Elemental sulfur causes skin irritation (H315), while
hydrogen peroxide causes severe skin burns and eye damage (H314), and is also harmful if
swallowed (H302) or inhaled (H332).

Regarding acute aquatic toxicity 39.8% (102 AS) of ConvAS were classified as very
toxic to aquatic life, but only 1.5% (2 AS) of OrgAS, namely the two insecticides pyrethrins
and spinosad (Figure 7). Regarding chronic aquatic toxicity, 49.6% (127 AS) of ConvAS
were harmful, toxic, or very toxic to aquatic life with long-lasting effects, while only 1.5%
(2 AS, pyrethrins and spinosad) of OrgAS were classified as very toxic to aquatic life with
long-lasting effects. For more detailed information, see Supplementary Table S3.
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Figure 6. Comparison of human health-related hazard statements of active substances (AS) approved
for use in conventional (ConvAS, n = 256) and organic agriculture (OrgAS, n = 134). Results of
chi2 tests denoted with asterisks: *** p < 0.001, n.a. a chi2 test was not applicable because of too
few categories.
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Figure 7. Comparison of acute and chronic aquatic toxicity of active substances (AS) approved for
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All differences described above were highly significant using the chi2 test (see Supplementary
Table S4 for test results). These differences remained even when all low-risk AS, basic
substances, and microorganisms were excluded from the comparison.

4. Discussion

To our knowledge, this is one of the first comprehensive evaluations of the potential
toxicity to humans and the aquatic environment of pesticide AS approved for use in
conventional agriculture (ConvAS) in the EU, compared to those approved for use in
organic agriculture (OrgAS), based on the risk and hazard classifications considered in the
EU pesticide authorization process. Overall, we found that ConvAS have a significantly
higher potential hazard to humans and the environment than OrgAS, in all categories
considered. Since our assessment was based on AS only, the inclusion of co-formulants
would most likely result in an even greater hazard potential from ConvAS [57–59].

The health-based guidance values and the GHS hazard statements that build the
basis of our analysis cover a wide range of health-related regulatory studies submitted
for the EU approval process. However, environmental effects in the GHS hazard classes
are limited to the assessment of acute and chronic toxicity to aquatic organisms only, and
include toxicity studies on fish, crustaceans, daphnia, and algae, as well as degradation
and bioaccumulation of AS. Effects on pollinators, birds, and earthworms, as well as on
groundwater, which also contribute to the data requirements of the EU approval procedure,
are currently not considered in the GHS hazard classifications.

Our assessment has shown that 55% (140 AS) of ConvAS currently approved in the
EU carry health or environmental hazard statements, while only 3% (4 AS) of OrgAS
do. Hazard statements warning of harm to the unborn child, cancer, or lethal effects from
inhalation, oral, or dermal intake, were found in 16.0% of ConvAS, while none of the OrgAS
were associated with these hazard classes. In addition, the establishment of health-based
guidance values for dietary exposure (ADI, ARfD) or occupational exposure (AOEL) was
considered relevant by the EFSA for 93.0% of ConvAS (238 AS), but only for 6.7% (9 AS)
of OrgAS.

One explanation for this significant difference in toxicity lies in the nature and origin
of the respective pesticide AS. Synthetic ConvAS are selected in laboratory screening
programs to identify substances with particularly high toxicity to target organisms. For
example, the toxicity of synthetic insecticides approved in the USA has approximately
doubled in 10 years, although application rates have been halved [60]. Similarly, the toxicity
of herbicides applied in Austria to honeybees, earthworms, or birds increased by more
than 400%, while their use, as measured in kg of AS, decreased by 24% [44].

In comparison, most of the OrgAS included in our assessment posed a much lower
risk, simply because they are approved as low-risk AS (e.g., iron phosphate, baking powder,
yeast extracts, or microorganisms), as basic substances (e.g., onion oil, washing soda, vine-
gar, or milk) or as microorganisms [45]. However, even if all low-risk AS, basic substances,
and microorganisms are excluded from the comparative assessment, the differences in
the proportion of hazard classifications remain statistically significant, as of the remaining
34 OrgAS, more than 90% still carry no hazard statements.

Another explanation for this fundamental difference between ConvAS and OrgAS lies
in their different modes of action. Almost all chemically synthesized ConvAS exert their
effect by influencing biochemical processes in the respective target organisms or non-target
organisms, in the case of undesirable side effects [9]. In this context, most synthetic AS act
as “single-site” inhibitors of enzymes or transmembrane receptors that are essential for cell
metabolism and signaling.

In the case of OrgAS, to our knowledge, a single-site mode of action was found only
in three insecticides: two plant secondary compounds, azadirachtin and pyrethrins, and
the bacterial agent spinosad [10]. While azadirachtin inhibits hormonally induced molting
of insect larvae, both pyrethrins and spinosad inhibit the transmission of nerve impulses.
Interestingly, these three natural insecticides alone account for seven of the eleven health
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and environmental hazard statements, and about one-third of the health-based guidance
values of all 134 OrgAS evaluated.

All other OrgAS in the EU generally have a multi-site mode of action, or act in other
ways by driving away pests, or by enhancing the plant’s defenses, which is the main
reason why the development of resistance is rarely observed with OrgAS in contrast to
ConvAS [61]. OrgAS such as copper or sulfur affect cellular processes in fungi at different
levels simultaneously [62]. Other OrgAS, such as vinegar or soap, act in a physicochemical
way by damaging the cell membrane. Baking soda (potassium hydrogen carbonate) or
slaked lime (calcium hydroxide) alter the pH and desiccate the target organism, while plant
oils form a physical barrier between the plant and insect pests [10]. Substances such as
garlic extract or quartz sand act as repellents via odor or taste.

As a result of the differences in the toxicity and mode of action described above, the
vast majority of OrgAS (with the exception of microorganisms and pheromones) require
hectare application rates that are one to three orders of magnitude higher than typical
ConvAS (i.e., kg ha−1 for OrgAS vs. g ha−1 for ConvAS). Given this wide range in hectare
application rates and toxicity, it is self-explanatory that the risk associated with the use
of different pesticide AS cannot be assessed by simply adding up the quantities used in
kilograms. Pesticide risk indicators that do this, and do not consider toxicity or hectare
application rates of each AS, can subsequently lead to grossly distorted results. They
systematically underestimate the risk of (mostly synthetic) pesticides that have low per-
hectare application rates due to their high toxicity, compared to (usually natural) pesticides
that have high per-hectare application rates and low toxicity [11,44]. This misconception
applies in particular to the Harmonized Risk Indicator 1 (HRI 1) [63], currently proposed to
monitor the pesticide reduction targets of the Farm to Fork Strategy [32,64].

Our comparative assessment demonstrates that the warnings of an ecological trade-off
due to an increase in organic agriculture, as expressed by Europe’s pesticide industry [34],
are not supported by the hazard classifications and health-based guidance values assigned
by the EU authorities, since they show OrgAS to have a significantly lower toxicity than
ConvAS. However, one may argue that the benefit of lower toxicity could be outweighed by
the higher hectare application rates of OrgAS, since exposure considerations are outside the
scope of hazard assessments, and are, therefore, also outside of this evaluation. However,
again, the available scientific literature provides little evidence of a relevant contribution of
OrgAS to the adverse effects of pesticides on soils, aquatic ecosystems, pollinating insects,
and other non-target organisms [3,65,66], or on pesticide-related acute and chronic health
effects in humans [67–69]—at least at the levels at which OrgAS are currently used.

An important reason for the observed inconspicuousness of OrgAS with regard to
negative health and environmental impacts could be, in addition to their significantly lower
hazard potential, their integration into the planetary material cycles [70]. This is particularly
evident for plant-, animal-, and microorganism-derived substances, which are integrated
into the carbon and water cycles and—depending on their chemical composition—also into
the nitrogen, phosphorus, or sulfur cycles. Microbial and plant-based OrgAS, or even the
toxic natural insecticides spinosad, azadirachtin, and pyrethrins, are usually biodegraded
quite quickly [71].

Inorganic OrgAS are embedded in natural cycles too. They are subject to chemical
transformations and weathering processes, in the course of which their biological activity
tends to be reduced. Sulfur, for example, occurs naturally in organic and inorganic forms
in a proportion of 0.2 to 5.0 g kg−1 in soil. When elemental sulfur is applied as a fungicide,
it is usually oxidized in the soil, and is thus mineralized to plant-available sulfate, with an
average half-life in active soils of less than one day [71]. Calcium hydroxide, which can
be used as a fungicide in fruit growing, is rapidly converted to calcium carbonate, which
is one of the most common deposits in the earth’s crust. Potassium hydrogen carbonate
also occurs naturally in soil and dissociates in aqueous solution into potassium ions (K+),
which are a natural component of soil and water, and hydrogen carbonate ions (HCO3

−)
are part of the carbon cycle in equilibrium with CO2 derived from plant roots and the
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atmosphere. Naturally occurring background levels of bioavailable potassium are well
above the maximum levels that could be released into soil and water during fungicide
treatment with potassium hydrogen carbonate [10]. Potassium, calcium, and sulfur are
essential nutrients or micronutrients for plants. This is also true for copper, an important
fungicidal AS for both organic and conventional agriculture, which occurs naturally in
the soil in various forms. Biologically active free copper ions, such as those contained in
copper-containing fungicides, are largely adsorbed by the clay–humus complex when they
enter the soil, with the proportion of biologically active copper in the soil being less than
0.3% of the total detectable copper [72]. Consequently, a meta-analysis on the ecotoxicity of
copper shows that the hectare application rate of 4 kg Cu ha−1 year−1 currently authorized
for viticulture in Europe does not significantly alter the biological quality and functions of
the soil [73].

Five mineral copper compounds that are currently authorized in the EU (copper
oxychloride, copper oxide, copper hydroxide, copper sulphate, and Bordeaux mixture)
were the only OrgAS classified as candidates for substitution in Europe [74]. Copper
fulfills the formal criterion of a candidate for substitution, due to its toxicity to aquatic
organisms and its persistence. However, it is controversial whether the concept of persis-
tence, which was developed to describe the resistance of certain chemically synthesized
organic compounds (so-called POPs; persistent organic pollutants) to chemical, physical,
and biological degradation, should also be applied to metallic or mineral compounds.
Indeed, the GHS classification is quite clear in this respect: “For inorganic compounds and
metals, the concept of degradability as applied to organic compounds has limited or no
meaning” [42]. The EFSA has acknowledged in its assessment report on copper that the
available guidance in the area of environmental risk assessment does not specifically cover
metal compounds, and that the assessment of copper was, therefore, carried out in the light
of currently available methods [75]. In the meantime, the EFSA has published a “statement
on environmental exposure and risk assessment for transition metals”, based on which
copper has been currently reassessed in the EU [76].

In view of the climate and biodiversity crisis, low-input farming has increasingly
become the beacon of hope for a climate- and biodiversity-friendly agriculture of the future.
This is also reflected in the goals of the European Green Deal, which, with its Farm to
Fork and Biodiversity strategies, aims, among other things, to reduce fertilizer use by 20%
and antibiotic and pesticide use by 50% by 2030, and to expand organic farming from the
current 8% to 25% of EU arable land [32].

Plant protection in organic farming differs conceptually and, above all, in practice
from conventional farming: preventive measures form the basis, and all practices are
regularly monitored [77]. Organic farming rules allow for the use of pesticide AS only
as a last resort, and include provisions for increasing biodiversity, crop rotation, soil
conservation and health, and area-based livestock [77]. As a result, only a small proportion
of organic areas is treated with pesticides, often ranging from 5% to a maximum of 10% [36].
Furthermore, organic agriculture benefits overall biodiversity [35,78]. Even though our
analysis showed that OrgAS have a significantly lower hazard potential than ConvAS,
all efforts to further reduce dependence on OrgAS in these areas are welcome. This can
be achieved by intensifying research on agroecological cultivation and plant protection
methods, and by developing robust, fungus-resistant varieties.

5. Conclusions

Our assessment shows that pesticide AS, approved for use in conventional and inte-
grated agriculture, are clearly more hazardous to humans and the environment than the
naturally occurring AS approved for use in organic agriculture. Claims from the pesticide
industry, in which the expansion of organic agriculture envisaged in the European Farm to
Fork Strategy could lead to ecological trade-offs due to an increase in the use of natural
pesticides, are clearly not supported by the results of our analysis. We, therefore, encourage
any political strategy that aims to reduce the use and risk of chemical pesticides while
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increasing the acreage of organic agriculture. This will help to reduce hazards to human
health, the environment, and biodiversity, and thus preserve the ecosystem services that
are essential to maintaining food security.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics10120753/s1. Supplementary Table S1: Full list of all
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GHS Hazard statements.docx. Supplementary Table S3: All active substances with GHS hazard
statements.xlsx. Supplementary Table S4: Results of Chi2 tests.docx.
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